

MCG story

- All shunts placed using minilaparotomy or split trochar open techniques prior to 2007
- Laproscopy reserved for the "hostile" abdomen
- Previous chairman left December 2008
- Pediatric surgery approached about laproscopically assisting with all distal catheter placement.

Alabama shunt study 2004-2009

- 810 consecutive VP procedures comparing laproscopic procedure to open placement of shunts
- Found no change in failure, but shorter LOS, reduced operative time, and blood loss
- Over course of study it was noted that surgeons began to prefer laproscopic assistance
- This study looked at adult shunt population

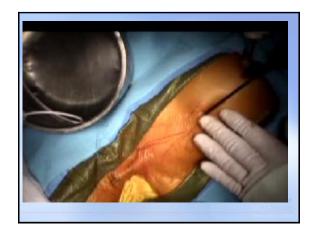
Study description

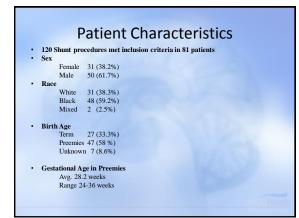
- Obtained IRB from our institution to conduct a retrospective chart review of all ventriculoperitoneal shunts placed with laproscopic assistance at our Children's Medical Center from Jan 2007- Dec 2011
- Study to review outcomes for our method of shunt placement
- Inclusion Criteria Any operation that included placement with laproscopic assistance of complete proximal, valve and distal catheter system with a proximal terminus in ventricle and distal terminus in peritoneal cavity

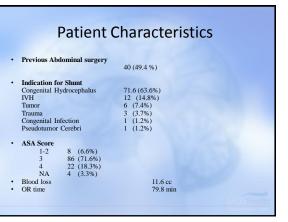
Procedure

Cranial

- Curvilinear occipital incision on right
- Burr hole made
- Distal tunneling performed
- With possible supraclavicular exit if one pass to abdomen not possible
- Terminus of distal tunneling determined by laproscopic team over RUQ


Procedure


Distal


- Incision and trochar for endoscope placed at umbilicus after insufflation of abdomen
- Abdominal contents inspected, adhesions taken down with camera, if necessary
- RUQ palpation visualized to determine entry point
- Peel-away trochar placed through abdominal incision using Seldinger technique

Procedure

- Joint
 - Distal tubing is passed to abdominal incision site and covered in antibiotic soaked sponge
 - Ventricular catheter is placed with Neuro-pen endoscope for optimal placement
 - Catheter attached to distal system, flow confirmed before placement in abdomen
 - Catheter passed into abdomen under laproscopic visualization and guided above liver where again, flow is confirmed

Ou	ır data vs	. Other l	ap VPS s	eries (ad	lult)
	Infection (%)	Prox. Mal. (%)	Dist. Mal. (%)	Total Mal. (%)	Mean Age (yrs)
MCG (n = 120)	13 (10.8%)	26 (21.7%)	3 (2.5%)	52 (43%)	5.0
Naftel et al. Lap(n= 475)	39 (8.2%)	35 (7.3%)	11 (2.3%)	85 (17.9%)	52.0
Naftel et al. Open(n= 335)	22 (6.6%)	40 (12.0%)	6 (1.8%)	68 (20.2%)	51.1

	Inf	fections	
• MSSA:	3/13 (23.08	%)	
• MRSE:	3/13 (23.08	%)	
• MRSA:	2/13 (15.38	%)	
• Entero	coccus: 2/13	(15.38%)	
• E. coli:	2/13 (15.38	%)	
• Pseudo	monas: 1/1	3 (7.69%)	

Birth Age	Infection	Proximal	Distal	Total complications	Tota Case
<30 weeks	4 (14.8%)	11 (40.7%)	2 (7.4%)	17 (63%)	27
30-36 weeks	1 (11.1%)	0	0	1 (11.1%)	9
Term	1 (5.9%)	4 (23.5%)	0	5 (29.4%)	17

Failure Cause According to Year

Year	Infection	Proximal	Distal	Disconnect	Total Case
2007	0	1 (33.3%)	1 (33.3%)	0	3
2008	3 (18.7%)	4 (25.0%)	0	1 (6.2%)	16
2009	4 (15.4%)	8 (30.8%)	1 (4%)	0	26
2010	4 (9.5%)	9 (21.4%)	1 (2.3%)	0	42
2011	2 (6.0%)	3 (9.1%)	0	0	33

Our data vs. open VPS in children

	Infection (%)	Prox. Mal. (%)	Dist. Mal. (%)	Total Mal. (%)	Mean Age (yrs)
MCG	13	26	3	52	5.0
(n = 120)	(10.8%)	(21.7%)	(2.5%)	(43%)	
Ahmed et al. (n = 50)	6 (12%)	7 (14%)	9 (18%)	22 (44%)	Range = 1 day–7 yrs
Casey et al. (n=380)	12%	*	*	53%	0-10 years
= 41% total me nalposition, frac or dist)					MCGE

Distal Malfunctions

- 17 yo AAF former preemie with multiple open VP shunt placements and revisions s/p laparoscopic VP shunt placement at age of 13
- Preemie with infected G-tube that caused distal shunt obstruction. Shunt found walled in by omentum on revision
- 24 wk preemie with NEC who had been managed with subgaleal shunt and EVD until 2 kg. VP shunt attempted and later converted to VA shunt.

Cons

- Reliance on another surgical team for every procedure
- · Agreement on procedure methods
- No significant improvement in overall shunt failures

Pros

- Reduced take-backs for misplaced catheters
- Above liver placement protects distal catheter
- Placement of only proximal catheter by neurosurgeon
- Reduced blood loss
- Reduced operative time
- No blind intraperitoneal procedures
- Training benefit for surgery residents at academic institutions

Future direction

• Attempt to compare laproscopic outcomes to open outcomes in the same study period.

Bibliography

•	Handler, M. and Callahan, B. Laparoscopic placement of distal ventriculoperitoneal shunt catheters. J Neurosurg Pediatrics 2:282-285, 2008.
•	Ahmed, A. et al. Outcome analysis of shunt surgery in hydrocephalus. J Indian Assoc Pediatr Surg. 2009 Jul-Sep; 14(3): 98-101.
•	Ghritlaharey, R. et al. Ventriculoperitoneal shunt complications needing shunt revision in children: A review of 5 years of experience with 48
	revisions. African J of Paediatric Sur. 2012 Jan-Apr; 9(1): 32-39.
•	Joshua L. Argo. et al. Laparoscopic versus open approach for implantation of the peritoneal catheter during ventriculoperitoneal shunt placement. Surg Endosc (2009) 23:1449–1455.
•	Soheila Raysi Dehcordi. et al. Laparoscopy-assisted ventriculoperitoneal shunt surgery: personal experience and review of the literature. Neurosurg
	Rev (2011) 34:363-371.
•	Kathryn Martin a. et al. The use of laparoscopy in ventriculoperitoneal shunt revisions. Journal of Pediatric Surgery (2011) 46, 2146–2150.
•	V. Nfonsam. et al. Laparoscopic management of distal ventriculoperitoneal shunt complications. Surg Endosc (2008) 22:1866–1870.
·	Inn-Chi Lee. et al. Posthemorrhagic Hydrocephalus in Newborns: Clinical Characteristics and Role of Ventriculoperitoneal Shunts. Pediatr Neonotol 2009;50(1):26–32.
•	Jason D. Fraser, MD. et al. The Safety of Laparoscopy in Pediatric Patients with Ventriculoperitoneal Shunts. JOURNAL OF LAPARDENDOSCOPIC & ADVANCED SURGICAL TECHNIQUES Volume 19, Number 5, 2009.
•	G. Kesava Reddy. et al. Ventriculoperitoneal shunt complications in hydrocephalus patients with intracranial tumors: an analysis of relevant risk factors. J Neurooncol (2011) 103:333–342.
•	Sherman Yu, MD. et al. Laparoscopic Guidance or Revision of Ventriculoperitoneal Shunts in Children. JSLS (2006)10:122–125.
•	Rajendra K. Ghritlaharey. et al. Ventriculoperitoneal shunt complications needing shunt revision in children: A review of 5 years of experience with 48 revisions. African Journal of Paediatric Surgery. January-April 2012 / Vol 9 / Issue 1.